Home Blog Page 31

Grape Trunk Diseases and Management

1
Photo1. Esca tiger strip symptom on Autumn King. All photos courtesy of Gabriel Torres.

“Trunk disease” is a catch-all term that includes several different fungal diseases of grapevines trunks worldwide. The term was coined in the late 1990s by Dr Luigi Chiarappa 1, and can include foliar and vascular symptoms caused by Petri disease, Black foot, Eutypa, Botryosphaeria dieback, Phomopsis dieback and Esca. Most of the fungi (more than 50 species) causing trunk disease are related, belonging to the order Botryosphareales, but fungi that belongs to the families that forms mushrooms can be also recovered from the cankers. In most of the cases, the cankers interfere with the movement of water from the roots to the leaves, shots and clusters.

Table 1. Summary of Trunk diseases
Photo 2. Measles s

Petri disease and Esca are caused by the closely related species of fungi in the genus Phaeomoniella and Paheoacremonium. In both diseases, longitudinal black stripes are visible under the bark. Different from Petri disease which occurs in vines younger than three years, Esca is observed in more mature plants. The foliar symptom can include the well-known “Tiger Stripe” pattern (photo 1). This symptom is visible normally by the end of June, when high temperatures stress the vines. Reddish-brown patches on the leaves are observed in red cultivars, while yellow patches are more common on white grapes. Esca is also known as “black measles” because the dark spots that develop on berries (photo 2). Measles is particularly damaging to table grapes because berry appearance is paramount.

Black foot is caused by two species of the fungal genus Cylindrocarpon, and it most commonly observed on young vines (three-year-old vines or younger). Stunted vines and scorched leaves (photo 3) are a typical sign of black foot. Affected roots present black lesions and look like they are dead. The disease was reported by late 1990’s in California and has been frequently found in fields with poor planting practices, especially those that were J-rooted at planting. The disease if not prevented, can require costly replanting.

Photo 3. Vines affected by black foot disease. Right: Black arrows shows the reduced growth. Left: scorch symptoms.

Botryosphaeria is caused by more than 20 species of fungi. However, fungi in of the species Lasiodiplodia and Neofusicocum are the most damaging. Spurs from infected vines won’t develop new shoots (Photo 4) . In cross-section, a pie shape necrotic lesion can be observed in infected trunks (Photo 5), however this symptom can be also observed in vines infected with Eutypa.

Photo 4. Lack of new shoots growth.
Photo 5. Typical symptom of botryosphaeria.

Eutypa is a common disease in California, and it is caused by the fungus Eutypa lata. In addition to the pie shaped internal lesion, proliferation of stunted shoots is common (Photo 6). This symptom is absent in Botryosphaeria disease, where no growth or no leaf symptoms are observed.

Photo 6. Stunted shoots proliferation on vine infected with Eutypa.

Phomopsis is normally associated with damage on green tissue, specially canes and leaves. However, when conditions favor the pathogen, damage caused by Phomopsis can result in dead of spurs, canes and buds. Severely affected canes develop cracks and have a bleached appearance during winter. In early spring reproductive structures of the pathogen are visible as black speckles.

Impact
All the described trunk diseases can be seen at any time of the vineyard life, but normally they start to appear between the third and the fifth year after planting. They can appear alone, or in combination, which can exacerbate the plant stress. In general, by year 10 to 12, 20 percent of the plants show symptoms when no preventive actions have been implemented. At this point, trunk diseases enter in an exponential phase, reaching 75 percent of infection by year 15, and 100 percent by year 20.

Figure 1. Trunk disease infection development in unattended vineyard.

Significant losses are associated with trunk disease development. Reduction in number of clusters, decrease in quality and cosmetic damages are the most visible impacts in the field. However, cost of replanting, and/or retraining if grower elects to use vine surgery, especially in young vineyards, it also a major cost associated with trunk diseases. Siebert2 in 2000, estimated the annual loss caused by Botryosphaeria and Eutypa in the California wine grape industry was $260 million. Similar negative effects have been reported in other grape growing areas and trunk diseases.

Management
Trunk diseases are considered chronic diseases, and unfortunately there is no fungicide that can provide curative action. Preventive management or the removal of infected tissue from the vine (surgery) and destruction by mulching or soil incorporation of infected shoots and canes are the only viable alternatives.

More than 95 percent of trunk diseases infections are associated with pruning, or other cultural practices that leave pruning wounds exposed at a time when the wounds may be infected. Dispersal of the pathogens responsible for causing trunk disease occurs during rain events. Under California conditions pruning and rain overlap during the winter months (November-January). Dr. Gubler and his team found that delaying pruning closer to bud break significantly reduces disease3. The logic behind this is that in a typical California year, rain is gone by the end of February and the days are warmer, letting the plants recover sooner than during the colder days of December and January. In addition, some sap movement (bleeding) starts to be present in February, helping the plant to remove the infective spores from susceptible tissue.

However, and knowing that the labor and logistics doesn’t permit all growers to postpone pruning until the last part of the winter, the use of fungicides to protect the exposed tissues is important to reduce the rate of the infection. The best practice is to protect the plant any time there are pruning wounds. This is especially important if rain is expected following pruning. If pruning is done in November or December, it is advised at least two sprays with protectant fungicides be applied. If the pruning is postponed until January and warmer days are forecasted, one protectant spray after pruning is ideal.

Another strategy for pruning is to do a double pruning (pre-pruning + pruning). It consists of pre-pruning the vines between November and January. Then, by the end of February or March, the pruning process is completed. The objective of this method is to remove any potential infection occurred during the winter months. A complementary fungicide spray after the last pruning can increase the control of trunk diseases.

In order to improve the efficacy of protective fungicide, a closer identification of the disease is recommended as any particular fungicide cannot control all possible pathogens. A recent report done by Baumgartner and Brown4 on their research in 2017, demonstrates that Pristine, Topsin + Rally (in mixture), and Luna had better preventive control of Botryosphaeria and Phomopsis dieback. Eutypa was controlled more effectively with Pristine. The highest control of esca was obtained with Serifel, but it only reached 64 percent. Results in 2018 in the same study presented different results and were mainly associated with a different weather condition.

Different studies, including the one recently done by Dr. Baumgartner and collaborators5, demonstrates that preventive practices works better if they are established during the first years of the crop (Figure 2). Dr. Baumgartner estimated that when more effective practices are adopted early in the crop life, it is expected to prolong the vineyard rentability by at least 25 years.

Figure 2. Calculated lifespan of profitable vineyard based on the efficacy of the implemented practice and the year when they are implemented.

Further information on trunk diseases can be found at:

1) http://ipm.ucanr.edu/PMG/selectnewpest.grapes.html
2) Bettiga LJ, ed. Grape Pest Management, Third Edition. University of California, Agriculture and Natural Resources; 2013. https://books.google.com/books?id=4A9ZAgAAQBAJ.
3) Wilcox WF, Gubler WD, Uyemoto JK, eds. Compendium of Grape Diseases, Disorders, and Pests. Second. St Paul, Minnesota, USA.: The American Phytopathological Society; 2017.
4) Disease P, Gramaje D. Grapevine Trunk Diseases: Symptoms and Fungi Involved. 2018;102(1):12-39. https://apsjournals.apsnet.org/doi/10.1094/PDIS-04-17-0512-FE

Cited literature:

1. Gramaje D, Úrbez-Torres JR, Sosnowski MR. Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Dis. 2018;102(1):12-39. doi:10.1094/PDIS-04-17-0512-FE
2. Siebert JB. Economic Impact of Eutypa on the California Wine Grape Industry. Davis; 2000.
3. Gubler WD, Rolshausen P e., Trouillase FP, et al. Grapevine trunk Diseases in Califronia. Pract Winer Vineyard. January 2005:1-9.
4. Baumgartner K, Brown AA. Protectants for Trunk-disease management in California table grapes. In: California Table Grape Seminar. Visalia: California Table Grape Commission; 2019:19-21.
5. Baumgartner K, Hillis V, Lubell M, Norton M, Kaplan J. Managing Grapevine Trunk Diseases in California ’ s Southern San Joaquin Valley. 2019;3:267-276. doi:10.5344/ajev.2019.18075

Non-Botrytis Fruit Rots of Strawberry: Under-estimated and Under-Researched?

0
Photo 5: Brown-orange root-like structures allow Rhizopus to rapidly spread between adjacent fruit. All photos courtesy of Steve Koike.

Growers face a multitude of obstacles when trying to produce large volumes of high-quality strawberry fruit for a market that runs for many months. Up-front, pre-plant ground preparation and transplant costs are significant financial commitments that are expensed before even a single strawberry plant is put in the ground. Untimely rains and insect infestations can result in loss of fruit quality and numbers. A series of soilborne pathogens can later cause plant collapse and loss of profit. Of course, the intractable labor shortage dilemma may even result in perfectly marketable fruit not reaching the consumer.

Photo 1: Two pathogens, Rhizopus and Mucor, can turn strawberry fruit into black lumps.

When it comes to diseases of the strawberry fruit, the number one concern is gray mold (also called Botrytis fruit rot), which justifiably attracts the rapt attention of field professionals and captures the interest of researchers. However, in coastal California another fungal issue can also take its toll on strawberry yields and quality and in many ways is overlooked and underestimated by the industry. Rhizopus fruit rot and Mucor fruit rot are collectively known as “leak” disease; this disease concern also deserves to be recognized and studied.

Symptoms, Signs, Diagnosis
In the field, leak symptoms and signs only develop on mature or near-mature fruit and are very distinctive. Infected red fruit first take on a darkened, water-soaked appearance; in short order the fruit will begin to wrinkle and collapse. Almost overnight the rapidly growing Rhizopus or Mucor pathogen will be visible as white fungal growth peppered and interspersed with tiny black spheres. Fungal growth will be extensive and can entirely envelop the fruit, turning it into a white and black lump (Photo 1). Rhizopus and Mucor produce pectolytic (endopolygalacturonase) and cellulase enzymes as they colonize the strawberry, disintegrating the fruit tissues and causing red juices (Photo 2) to ooze and flow onto the plastic that covers the bed. It is because of these messy red juice flows that the designation “leak” is used for this disease.

Table: Description of various fungi found on post-harvest strawberry.

This ugly scene in the field, however, is only part of the problem that these fungi cause. During harvest infected but symptomless fruit, as well as healthy fruit exposed to spores of the two pathogens, will be packed into containers. The pathogens can continue to grow during postharvest handling, storage, and market display of fruit, causing postharvest fruit losses, shortening of shelf life of the product, and creating a mess in crates and clamshells (Photo 3). In fact, if fruit are not properly refrigerated, the fungus on a single infected fruit can rapidly spread throughout an entire container, resulting in what is known as “nesting” or clumping of oozing, rotted fruit. Harvested strawberry fruit are subject to a number of rotting molds; the leak fungi are generally identifiable due to the color and nature of the fungal growth (see table).

The Pathogens
Much is already known about the two fungi causing strawberry leak disease. Rhizopus and Mucor are both in the group of fungi called Zygomycetes. Both fungi are commonly found in agricultural environments and cause similar ripe fruit rots on crops such as apricot, cherry, peach, pear, and tomato. While closely related to each other and difficult to differentiate in the field, the two pathogens differ slightly. On California strawberry, Rhizopus tends to be the more commonly encountered pathogen. Rhizopus grows very rapidly and haphazardly in orientation, creating a web-like mess of mycelium (Photo 4). Rhizopus forms a brown orange, root-like structure (called rhizoids) that allows it to quickly spread between adjacent fruit (Photo 5). The black, spherical spore bearing structures produce huge numbers of dry spores that are readily spread by winds (Photo 6). Mucor grows more slowly with an upright, erect mycelial habit (Photo 7) and also produces spores on a black spherical structure (Photo 8). However, Mucor spores collect in a wet droplet surrounding the head; such spores are therefore less prone to dispersal by winds.

Photo 2: The leak pathogens produce enzymes that cause strawberry fruit to ooze juice.
Photo 3: Enzymes released by Rhizopus and Mucor can cause significant fruit breakdown during storage and transport.

Both fungi survive and increase in the field by colonizing dead organic matter and debris; Rhizopus and Mucor also readily colonize discarded and over-ripe strawberry fruit left on the plant or thrown into the furrow. These fungi produce a resilient structure (zygospore) that resists drying and weathering and provides another means of survival. Both Rhizopus and Mucor can be readily isolated from soil, thereby demonstrating that these fungi can persist in fields even if strawberry is not present. Once strawberry fruit begin to develop and ripen, spores come in contact with the fruit and usually gain entry via wounds and injuries. Strawberry leak pathogens tend to be more active if temperatures are relatively warmer, generally 65 F or higher. This temperature factor may be one reason that leak disease is more damaging in coastal California in late summer through early fall. The pectolytic enzyme that causes fresh market fruit to melt into juices can also be a concern in some processed fruit products. The enzyme is heat-stable and withstands canning temperatures; for example, apricot halves and brined cherries that are contaminated with Rhizopus and then canned may end up being apricot or cherry mush because of the continued activity of the stable enzyme even though the original fungus is cooked and dead.

Photo 4: Rhizopus growth is rapid and results in a messy, web-like mycelial growth.

Management Options and Research Needs
Growers already know to refrigerate strawberries as soon as possible after field packing the fruit. Refrigeration is a primary management tool for reducing losses due to leak disease. While refrigeration generally limits the development of Rhizopus, it is notable that some species of Mucor can grow quite well at storage temperatures of 32 F (0 C). Therefore, one research need is the precise identification of Rhizopus and Mucor species present in strawberry fields. Different species will have different temperature optima regarding growth and ability to infect fruit in the field, and the different species may respond differently to postharvest conditions.

Photo 6: The black, spherical spore-producing head of Rhizopus releases thousands of wind-borne spores.

Sanitation, both in field and during harvest, is another means of limiting leak development. Reducing the amount of over-ripe and rotted fruit in the field may help limit the Rhizopus and Mucor inoculum present in the planting; the influence of field sanitation on inoculum is another area of needed research. Field sanitation may be an increasingly difficult goal to attain given labor shortages and costs. Sanitation during the harvest process mainly involves the training and education of harvesters. Harvesters who touch and handle leak fruit will easily transmit the fungus to healthy fruit that are packed. Therefore, pickers should be reminded not to touch leak fruit and to be sure not to pack fruit showing any hint of leak infection.

Photo 7: On strawberry fruit, the Mucor pathogen grows with an upright, erect mycelial habit.

Fungicides can effectively limit Rhizopus development for some crops. However, such information is lacking for strawberry. Research is needed to determine the efficacy and feasibility of using fungicides for leak management in strawberry. Other interactions involving fungicides should also be investigated. There are indications that fungicides used to manage Botrytis could exacerbate growth by Rhizopus and Mucor.

Photo 8: Mucor also produces a black, spherical head, though the spores are captured in a droplet and are not readily spread by wind.

Among the many challenging factors facing strawberry growers, leak disease is not the number one concern. However, during certain times of the year in coastal California, leak disease can affect a significant amount of the harvest. A better understanding of strawberry leak disease, achieved through collaborative research, may help this industry manage this problem and improve on an already excellent commodity.

Assessing the Impact of Irrigation Water Quality on Strawberry Cultivars

1

Strawberries are the third most valued crop in California ($2.3 billion) and one of the most sensitive to salinity. Limited information on the tolerance of new varieties to salt and chloride toxicity has led to significant yield losses in recent years. Even a modest yield loss of 5 percent due to soil and water salinity may cost the strawberry industry and California $260 million per year. Despite the importance, commonly used salinity tolerance thresholds for strawberry (Ayers and Westcot, 1985) are based on studies almost a half-century old and may not be applicable to the soils, water quality, climate, and modern cultivars grown in California. California production, which accounts for approximately 85 percent of the strawberries produced in the US, are mostly grown on coastal soils with electrical conductivity (ECe, saturated paste extract method) ranging from 2 to 4 dS/m. Some of these soils have moderate to high concentrations of calcium, bicarbonate and sulfate. Although most of these salts may be precipitated in the form of calcium sulfate (gypsum) and calcium carbonate (lime) and have limited impact on plant growth, the ECe can be considerably increased when a soil sample is saturated with distilled water (used in the saturated paste extract method) due to the dissolution of these salts. That is a common scenario found in arid regions such as in the Southwestern US (e.g. Ventura County), where limited rainfall contributes to the accumulation of certain salts in the topsoil. In the Watsonville area, however, there is much less carbonate and sulfate in the groundwater and therefore in agricultural fields, where sodium and chloride are of major concern. Excessive sodium most often leads to high sodium adsorption ration (SAR), which causes infiltration problems on some soil types. In irrigated agriculture, the irrigation water quality and leaching fraction are usually the main factors driving soil salinity. When appropriate leaching amounts are applied, the salinity of the soil and of the irrigation water reach a steady-state (equilibrium). However, when irrigation amounts do not exceed crop evapotranspiration (ETc), soil salinity can increase considerably due to the accumulation of salts in the rootzone. Infiltration rate and rainfall also affect soil salinity. In an attempt to account for the precipitation effect of certain salts, Rhoades et al. (1992) suggest that plants can tolerate ECe about 2 dS/m higher than published thresholds when grown on gypsiferous soils (soils that contain significant quantities of gypsum, or calcium sulfate). Although this publication provides basic management guidance, strawberry growers and farm managers need more detailed information to determine leaching fractions and to select irrigation water sources and cultivars. Identifying the specific types of anions and cations that make up the salts in soil and irrigation water is important for predicting how different strawberry cultivars will tolerate salinity. For example, a field with soil ECe of 2.5 dS/m, where chloride is approximately 10 meq/L can have significantly greater impacts on strawberry yields than a soil with the same soil ECe where chloride is 2 meq/L and calcium and sulfates are the predominate salts.

Table 1. Irrigation water chemical analysis average and standard deviation of 40 fields in the Oxnard and in the Watsonville production districts, year 1 (2016/2017 season).

Material and Methods
In order to assess how susceptible strawberry cultivars are to irrigation water of different quality, a two-year study was conducted in California between 2016 and 2018. The first year of the study consisted of a survey conducted in 40 strawberry fields located in the Oxnard and Watsonville districts, where irrigation water and soil samples were analyzed for salinity composition. Overall, the irrigation water of the fields located in the Oxnard district had greater electrical conductivity and significantly greater sulfate levels, while chloride levels in the Watsonville fields were twice as great as the Oxnard fields (Table 1). These results were used as the benchmark for determining the treatments of the salinity tolerance experiment conducted the following year.

Figure 1. Picture of experiment site with water-powered injectors mounted on top of 55 gallons containers of each treatment, with experiment plots in the background.

The second year of the study consisted of an experiment conducted in a commercial field located in Oxnard, California during the 2017/2018 production season. Strawberry yield, soil salinity and salts content in leaf blades of the two most popular public cultivars in Oxnard (cv. Fronteras) and in Watsonville (cv. Monterey) were assessed under eight salinity treatments following a randomized complete block design. Each plot was 30 feet long and 1 bed wide (64 inches), with four plant rows, approximately 90 plants/plot, and two high flow drip tapes (0.67 gpm/100ft) placed about 1.5 inch deep between the 1st and 2nd, and between 3rd and 4th plant rows. The experiment was planted on October 2017, and the treatments started approximately a month post-planting in order to promote a good establishment of the crop; during that period, overhead micro-sprinklers was the predominant irrigation method. Drip irrigation amounts and timing were decided based on ETc estimations from the California Irrigation Management Information System (CMIS station # 152) weather station, and matric potential readings from tensiometers, respectively. Water-powered injection pumps (Figure 1) blended the well water with concentrated salt solutions formulated for each treatment at a 1:100 ratio during every drip irrigation event from November 2017 to June 2018 (total of 60 drip irrigations). The treatments consisted of irrigation water with two levels of elevated sodium adsorption ratio (SAR, 4.6 and 6.6), three levels of elevated chloride (4.2, 7.7 and 11.7 meq/L), and two levels of elevated sulfate (18.3 and 26 meq/L of SO4). Table 2 displays a complete description of the salts’ composition of each treatment. Composite soil and leaf blade samples were collected from each plot at early, mid and late production stages and analyzed for pH, ECe, Ca, Mg, Na, Cl, B, HCO3, CO3 and SO4 (soil samples), and N, P, K, S, B, Ca, Mg, Zn, Mn, Fe, Cu, Na and Cl (leaf blade samples). Marketable and unmarketable yield, and berry weight were measured in average twice a week from December 2017 through June 2018, totaling 54 harvesting events. There was a total of 5.8 inches of rainfall throughout the entire growing season, of which 4.8 inches happened in March, between the first and second sampling events.

Table 2. Chemical analysis of irrigation water treatments of year 2 (2017/2018 season). Values represent average of three samples collected from the drip tape throughout the season.

Results and Discussion
Total marketable yield of Fronteras was significantly (P<0.05) reduced by 13 and 17 percent with increasing chloride levels of 7.7 and 11.7 meq/L, respectively (Table 3). Although yields of all other treatments were lower than the control treatment (Figure 2), those differences were not statistically significant (P>0.05). The high sulfate treatment reduced Fronteras cv. marketable yield by 10 percent, although the differences were not statistically significant (P=0.094). Yield losses due to the elevated salts started before plant symptoms were noticeable in Fronteras. Total marketable yield of the Monterey cultivar was not significantly affected by any salinity treatment (Figure 3 and Table 4). Cull rates of both cultivars were not affected by the salinity treatments. Fronteras berry weight was significantly reduced by 6.3 percent with the highest chloride treatment (11.7 meq/L). Salt concentrations in soil and leaf blade samples consistently increased with the higher salinity treatments for both cultivars (data not shown).

Table 3. Total yield response to treatments, Fronteras cultivar.
Figure 2. Total marketable yield of Fronteras cultivar displayed in boxplot graph; in this graph, the box represents the limits between the 25th and the 75th percentiles, and the whiskers represent the upper and lower endpoints. The horizontal line inside the box represents the median.

The rainfall events that occurred between the first and second samplings contributed to significant leaching of salts from the root zone (0-12 inch depth), which made overall ECe values from the second sampling date very similar to the values measured during the first date. Hence, yield losses observed in this experiment may have been greater, and occurred sooner if the rainfall during that period had been less. Additionally, plant symptoms of the salinity treatments, which were not observed until mid-May, may have been observable sooner with less intense precipitation. Overall, the most surprising finding of this study is the marked differences in yield response to the salinity treatments between the two cultivars. While Fronteras proved to be highly susceptible to increased irrigation water salinity, especially in regards with chloride, Monterey cv. presented limited and statistically not significant yield declines. Accordingly, other major public and proprietary strawberry cultivars may also exhibit a range of susceptibility to salinity. It is also reasonable to expect greater yield losses of the cultivar Fronteras grown on fields that have been farmed with irrigation water quality equivalent to the treatments of this study for years. In that case, plant establishment can be compromised by the increased water and soil salinity, especially if the irrigation wasn’t managed with the appropriate leaching requirement to the water quality. The fact that the Monterey cultivar did not respond to the salinity treatments included in this study may be related to significantly greater chloride levels found in the irrigation water of the Watsonville area, where the cultivar was selected and tested before being released to commercial production.In summary, the findings of this study conclude that the strawberry cultivar Fronteras is highly susceptible to elevated chloride levels, and that salinity effects on strawberry yield is cultivar dependent. Although this study provides conclusive information of salinity effects on Fronteras and some information about Monterey cultivar, the quest to understanding the impact of salts on the main strawberry cultivars is very challenging and most likely far from being achieved.

Figure 3. Total marketable yield of Monterey cultivar displayed in boxplot graph.
Table 4. Total yield response to treatments, Monterey cultivar.

References
Ayers, R.S. and D.W. Westcot, 1985. FAO Irrigation and Drainage Paper 29: Water quality for agriculture. In Crop tolerance to salinity.http://www.fao.org/3/T0234E/T0234E03.htm#ch2.4.3
Rhoades, J.D., A. Kandiah and A.M. Mashali. 1992. FAO Irrigation and Drainage Paper 48: The use of saline waters for crop production:http://www.fao.org/3/t0667e/t0667e00.htm

Magnesium Deficiency in Grapes

0
Figure 1. Magnesium deficiency in Scarlet Royal table grapes. Photo courtesy of Matthew Fidelibus.

When most California grape growers think of macronutrients, nitrogen (N) and potassium (K) are rightfully at the top of list, as these two mineral nutrients are needed in relatively high amounts and are commonly supplemented with fertilizer applications. However, magnesium (Mg) is also considered a macronutrient, though it is needed in much lower amounts than N or K. Even so, it is not uncommon to observe Mg deficiency symptoms, especially in certain grape varieties which appear to be particularly prone to Mg deficiency, including Barbera, Grenache, Redglobe, Thompson Seedless, and Zinfandel. Recently, I have heard from several growers that some of the newer table and raisin grape varieties also appear to be prone to Mg deficiency. Rootstocks also differ in their ability to take up Mg. For example, 1103P is considered to be good at amassing Mg, whereas Riparia Gloire (Vitis riparia), and some V. riparia hybrid stocks are less effective at amassing Mg.

Magnesium
Magnesium is a central component of chlorophyll, and by mid to late summer, the leaves of Mg-deficient vines typically develop a distinctive creamy-white chlorosis along the margin of basal leaves. The primary and secondary veins of the leaves retain a dark green color, resulting in a Christmas-tree pattern on the leaf (Figure 1). In red varieties, the leaf margins may develop red color (Figure 1), and in severe deficiencies, the margin may become necrotic, brown colored, and dry. Analysis of petiole samples can be useful in verifying Mg deficiency. Petioles collected at bloom should contain >0.3 percent Mg.
Magnesium plays a critical role in enzymatic reactions, including the activation of adenosine triphosphate (ATP). Magnesium deficiency impairs the loading of sucrose into phloem in leaves, thereby causing carbohydrates to accumulate in leaves, while reducing the supply of carbohydrates to other organs that need them. Thus, Mg deficiency could theoretically limit the vine’s ability to produce and distribute carbohydrates. Australian research has linked low Mg levels in rachises with bunch stem necrosis (BSN), and in such cases, application of Mg reduced BSN. Vines with Mg-associated BSN sometimes, but not always, had leaves with Mg deficiency symptoms. However, studies in California have not verified a link to Mg and BSN.

Magnesium is Moderately Leachable in Soil
Magnesium is moderately leachable in soil and tends to be most abundant in subsoil and least abundant in the surface layers, especially on weathered soils. Young vines are more susceptible to Mg deficiency than older vines, probably because the roots of young vines have likely not explored as much of the subsoil as the roots of older vines. Thus, vine age, particularly the age of the root system (if on topworked vines), should be considered when assessing the relatively susceptibility of new varieties to Mg deficiency. Removal with the harvested crop can further reduce Mg in a vineyard, though previous studies suggest that grape berries only amass about 0.2 lbs Mg/ton of fruit. The Mg concentration in soils can be easily measured, but critical soil values have not been established, and it would be very difficult to account for the possible supply of Mg in the subsoil that may be available to the vine.

As noted above, Mg deficiency can occur due to insufficient Mg in the root zone, a limited root system, or both. However, Mg deficiency can also be induced by soil acidification (pH < 5.5), which can occur after years of irrigation and fertilization. High levels of other cations, especially K and calcium (Ca) compete with Mg for uptake by roots. Thus, an imbalance in K or Ca may induce Mg deficiency. Peacock and Christensen (1996) suggests Mg deficiency is most likely when the Mg saturation of cation exchange capacity of the soil is <5 percent, or when total exchangeable Mg concentration drops below 25 mg/kg. In addition, Peacock and Christensen (1996) notes that exchangeable Mg should be two to three times as high as exchangeable K.

Mild Mg Deficiencies
Mild Mg deficiencies, defined as the appearance of symptoms on a few basal leaves in localized vineyard areas, do not contribute to economic loss, and do not require correction. More serious deficiencies should be corrected. To correct Mg deficiencies, growers should consider the various factors, outlined above, which can contribute to Mg deficiency. For example, if soil acidification is found to be a contributing factor, then incorporating lime into the soil can help address Mg deficiency. Dolomitic limestone can increase pH and add Mg. Fertigation and foliar application of Mg fertilizers are effective and may be needed in cases where the deficiency is due to insufficient Mg in soil. Magnesium sulfate may be used for either fertilization method, though other Mg fertilizers are also available. Christensen and Peacock recommended ½ to 2 lbs of MgSO4/vine for fertigation, and 4 lbs MGSO4/100 gallons for foliar application.

Further Reading:
Christensen, L.P. and W.L. Peacock. 2000. Mineral nutrition and fertilization. In Raisin Production Manual. L.P. Christensen (Ed.), pp. 102-114. University of California Agriculture and Natural Resources, Oakland.
Peacock, B. and P. Christensen. 1996. Magnesium deficiency becoming more common. UCCE Pub. NG5-96

Neofabraea Leaf and Twig Lesions,
a New Disease of Super-High-Density Olive trees

0
Figure 1 – Neofabraea leaf lesions on Arbosana olive.

Neofabraea leaf and twig lesions were first detected in California super-high-density oil olive orchards in 2016. Since then the disease was found in Glenn, San Joaquin, and Stanislaus Counties. Causal agents of this new disease of olive were identified as Neofabraea kienholzii and Phlyctema vagabunda (syn: Neofabraea vagabunda). Phlyctema vagabunda is known in Spain as the causal agent responsible for the olive leprosy or lepra fruit rot, causing fruit malformation as well as leaf lesion and twig canker. This disease is of increasing concern in Spain, Portugal and Italy. Dr. Trouillas at UC Davis has outlined the disease epidemiology, disease cycle, and determined best spray timings and materials that will help to control this disease.

Disease Symptoms
Neofabraea leaf and twig lesions are primarily associated with wounds, such as those sustained during mechanical harvest. Leaf lesions are circular to elongate, necrotic, approximately 0.5 to 1cm in diameter and normally do not number more than one lesion per leaf (Figure 1). Twig lesions are reddish-brown in color mainly affecting the bark tissues (Figure 2). The disease may occasionally cause fruit rot near the time of harvest. In severely infected orchards, defoliation and fruit loss may occurr.

Disease Biology
Two fungal pathogens have been identified using morphological and molecular techniques: Neofabraea kienholzii and Phlyctema vagabunda (syn: Neofabraea vagabunda). These pathogens have been associated with bull’s eye rot and canker of apples and pears in the Pacific Northwest.

In olive, the disease has been detected primarily from super-high-density oil olive orchards in Glenn, San Joaquin and Stanislaus counties. The cultivar ‘Arbosana’ is the most susceptible but the disease has also been isolated on occasion from ‘Arbequina’ olives in the Central Valley. It was not found in the Koroneiki cultivar. Previous reports of the disease in California olive have included fruit spots in ‘Cortina’, ‘Picholine’ and ‘Frantoio’ varieties in Sonoma county. To date, table olive varieties (Manzanillo and Sevillano) in the Central Valley have not tested positive for Neofabraea leaf and twig lesions.

Infection occurs at the site of plant injuries. In super-high-density oil olives, these wounds are typically associated with damage caused by mechanical harvesters but may also include abrasion sites where leaves or twigs rub against each other. Following mechanical harvest, rain events allow for fungal inoculum to be released in the air, leading to infection of the fresh wound sites. Leaf spot symptoms are most visible in March, with defoliation occurring in April and May. Infected leaves and fruits act as inoculum sources for infection the following year.

Disease Management
Field trials have been conducted for three consecutive years in the highly susceptible Arbosana cultivar to determine fungicide efficacy. Results showed that several products were effective in reducing infection by the pathogens and limiting disease incidence. Overall, best disease control was achieved by Topsin M, Vanguard, Inspire Super, Bravo and Ziram fungicides, which provided up to 75 percent reduction in disease incidence. Copper fungicides did not control the disease. Comparison of different fungicide application regimes showed that one to two applications after harvest significantly reduce disease incidence. Two independent wound susceptibility trials were conducted also to determine the duration (0, 1, 2, 3, 4 or 5 weeks) when wounds on leaves remain susceptible to infection, and thus determine the number and timing of fungicide applications required to control Neofabraea and Phlyctema diseases. Results showed that leaves inoculated immediately after wounding (harvest) and those inoculated one week after wounding were the most susceptible to infection. Overall, leaf wound susceptibility to infection declined substantially after four weeks following wounding. This suggests that wounds had healed after four weeks following a wounding event at harvest and that one fungicide application after harvest followed by a second application two to three weeks later should suffice to protect olive trees from infection.

Figure 2 – Neofabraea twig lesions on Arbosana olive.

Next Steps
Two fungicides were nominated to the IR-4 program in 2018: Ziram (Ziram 76WDG) and difenoconazole/cyprodinil (Inspire Super). These fungicides were approved for residue trials at the National Food Use Workshop in September for registration on olives. Strong support was provided based on the after-harvest and winter season usage with expected zero to limit-of-detection residues on the crop in the following harvest season. Ziram is a FRAC Code M3 whereas Inspire Super is a FRAC Code 3/9. Thus, integration of multi-site modes of action for both products was also established as an effective anti-resistance strategy. Ziram and Inspire Super were also submitted for section 18 emergency exemptions, which are expected to come into effect during the course of 2020. The availability of these two fungicides in olive will improve control of Neofabraea and Phlyctema leaf and shoot lesions and will allow for management of fungicide resistance by rotating modes of action.

Acknowledgements
We are thankful to the Olive Oil Commission of California for funding this research.

Do Liquid Digestates, By-Products of Bioenergy Production, have Nematode-Suppressive Potential?

0
Experimental tank wagon for band application of liquid digestate in a walnut orchard. The digestate is pumped via a custom nozzle underneath the tree row. Food hygiene guidelines need to be observed.

Large amounts of organic wastes of food or animal origin accrue in cropping systems and in the food industry. Traditionally, many of these byproducts could remain in the agricultural production chain. For example, almond hulls may be used as dairy feed. Others ended up in landfills. With the continually increasing amounts, and for other market changes, alternative uses are urgently needed. When converting these energy-rich materials to biogas, organic matter from food waste or animal manure are processed through anaerobic digestion by microorganisms in specialized biodigesters. The resulting biogas is then used as fuel for electricity and heat generation or put into cars and other vehicles as transportation fuel. The anaerobic digestion process has been favored to reduce the emissions of methane and other gases from organic waste materials during natural decomposition. Although animal manure is probably the most widely used substrate for anaerobic digestion worldwide, food waste is another organic substrate due to its high methane production potential. Besides biogas, a liquid effluent called anaerobic digestate is also produced from digestion processes. The disposal of such residues represents an environmental and economic challenge. A meaningful use of this material would favorably impact environmental stewardship by reducing waste disposal issues, and could benefit agriculture by recycling the nutrients in the digestate for plant growth benefits.

Plant-parasitic Nematodes
Plant-parasitic nematodes are a constraint in crop production, especially in perennial crops in California. Long cropping cycles, soils that favor high nematode densities, and favorable climate conditions, increase nematode reproduction. In the past, nematode-infested fields have been effectively treated with soil fumigants before planting or with various post-plant nematicides. The use of fumigants and non-fumigant nematicides is challenged by human and environmental health concerns. For example, regulation limits the use of 1,3-dichloropropene materials under a so-called township cap—so quantity restriction based on the entire amount used in an area. Clearly, more environmentally friendly alternatives to the use of these chemicals are urgently needed.

Environmentally Friendly Alternatives
A number of studies have investigated the potential of these digestates as bio-fertilizers. Because these wastes originate from plant material they are nutrient rich and their use fits into a cyclic production of returning byproducts to the primary field production. Such cycling has positive environmental effects. In some studies, the potential of these digestate for managing pests and diseases in different crops were explored. In a study in Germany, anaerobically digested maize silage suppressed the sugar beet cyst nematode, a major pest of sugar beet production in Central Europe. Using organic materials as nematode management tool is challenging because such materials can vary greatly in their physico-chemical composition. This composition likely will impact the nematode-suppressive potential of digestates. It probably depends not only on the substrate but also on the conditions during anaerobic digestion.

Experiment with pepper in microplots. Microplots are contained areas of two foot diameter and five feet long culvers perpendicularly inserted in the ground, and filled with test soils. Each of these plots allow for precise application amounts of digestates or other treatments.

In a project supported by the Department of Pesticide Regulation (DPR), digestates from different sources of different processing conditions and substrate base as well as varying chemical constitution showed differences in nematode suppressive potential. This illustrated the challenge of working with organic materials, and the need to quickly and easily characterize the nematode suppressive potential of digestate. For this purpose, a robust fast turn-around bioassay was tested in three different incubation environments, two different growing containers, and with two different nematode life stages as inoculum. In this test, a single radish seed is planted into nematode-infested soil in small containers after a small amount of digestate has been added. After four to five days, a staining procedure is used to visualize the nematode that have penetrated the young radish roots. Low numbers compared to roots that did not receive the digestate suggest some suppression of nematode infection. In this project, results were similar in the different contexts, and the digestate tested was able to suppress nematodes in all contexts. Based on these results, this bioassay may be useful as a quality control tool for measuring nematode suppressivenesss of organic liquids that could possibly be implemented by commercial laboratories.

Watermelon experiment for testing for efficacy of digestates to suppress nematode population densities. Watermelon seeds are grown in root-knot nematode-infested soil after at-plant application of digestates for one month. Then roots are harvested and examined for nematode-induced galling.

Temperature
Temperature is one of the most significant parameters influencing anaerobic digestion. Biogas generation through the anaerobic digestion process can take place over a wide range of temperatures, from as low as 50 F (10 °C) to 135 F (55 °C), corresponding to psychrophilic <68 F (< 20°C ), mesophilic 68 to 104 F (20-40°C ), and thermophilic >104 F (>40°C ) conditions. Because of an increased biogas yield, in most cases, digesters are operated under mesophilic or thermophilic conditions. Temperature does influence the activity and composition of microorganism groups. This influences the methane yield and likely the constitution of the resulting digestate possibly influencing the nematode suppressive potential. Of course the substrate, which can vary between different organic wastes will impact this constitution as well. The substrate and the process may therefore impact what secondary metabolites are produced during digestion, and thus nematode suppressive potential. Therefore, liquid manure and food waste both processed either mesophilically or thermophilically were used in a number of experiments to study the influence of these two factors.

Radish seedling four days after seeding into nematode-infested soil and digestate amendment. This seedling has sufficient roots to allow for examination of nematode infection.

Food Waste Versus Manure
In the radish bioassay with the sugar beet cyst nematode, no difference in root penetration was found between the two substrates (food waste vs manure) but a significant difference was found between the two processes. The thermophilic digestates were able to reduce nematode root penetration by more than 50 percent compared to the mesophilic digestates. In greenhouse experiments, the digestates of different substrates and processes were used to treat watermelon in soil infested with Meloidogyne incognita (root-knot nematode, RKN) to test the versatility of nematode suppression. After five-weeks incubation, plants were harvested and roots evaluated for nematode damage (root galling, and number of egg masses). Nematode-induced galling was similar or higher in plants from the digestate treatments than for plants from the control. A numerically small but significant reduction in root galling was found in food waste compared to manure. None of the digestates resulted in better plant growth when compared to the control.

Small Field Experiments
Microplot and small field experiments were conducted to implement the findings of controlled conditions into practical field contexts. Application strategies included drench application of the digestates as pre- or post-planting treatments. In a bell pepper microplot trial in RKN-infested soil, five different digestates were applied at planting. Three months later, plants were harvested and roots assessed for nematode suppression. The digestates did not result in improved plant growth compared to the control treatments. Nematode damage in roots was not reduced after treatment with digestates. Although, populations for RKN after harvest, were lower in plots treated with mesophilic manure and similar to the nematicide control. Similar studies were conducted with almond and walnut and ring nematode, root-knot and root lesion nematodes but results were somewhat variable indicating the need for improved application strategies.
In summary, some beneficial effects of thermophilic digestates were observed on plant growth and nematode suppression compared to mesophilic digestates under controlled conditions. In preliminary tests in the greenhouse, nematode suppression was observed but under field conditions with different nematode pests of different crops, inconsistent results were obtained. Further experimentation is needed to elucidate the chemical nature of compounds conferring nematode suppression, and how to make use of this beneficial capacity of the waste product digestate. The environmental and economic benefits of cycling plant nutrients and concomitantly suppressing soil pests make this a valuable endeavor.

Root-knot nematodes are known for their root changing effects. Galls or the name-giving knots are visible on young seedlings, and older plants. Water and nutrient uptake are impeded by such unusual roots.

SELECTIVE FORCES
THAT ACT ON WEEDS

0

Weeds are problematic in crops, primarily because they compete with commodities for water, light, and nutrients, which can result in yield loss. Weeds can also impact crops, indirectly, by serving as alternate hosts for insects and pathogens (Del Pozo-Valdivia 2019; Petit et al. 2011), providing habitat for vertebrate pests (White et al. 1998), or by impeding harvest operations (Morgan et al. 2001; Smith et al. 2000), among many other effects.

Resistant Weeds
Consequently, growers employ a variety of control strategies, including the application of herbicides, to manage unwanted vegetation in their production systems. Although herbicides can be extremely effective, weeds may escape chemical control for a variety of reasons, including the evolution of herbicide resistance. Currently, there are 500 confirmed cases (species x site of action) of herbicide resistance, worldwide (Heap 2019). With respect to the United States, 164 unique instances of resistance have been documented. Most resistances (52 cases) are to the acetolactate synthase (ALS) inhibitors followed by the photosystem II (PS II) inhibitors (26 cases), 5-enol-pyruvyl-shikimate-3-phosphate synthase (EPSPS) inhibitors (17 cases), and the acetyl-CoA carboxylase (ACCase) inhibitors (15 cases) (Heap 2019). Examples of active ingredients for these sites of action would be rimsulfuron (ALS-inhibitor), atrazine (PS II-inhibitor, glyphosate (EPSPS-inhibitor, and sethoxydim (ACCase-inhibitor), respectively.

Herbicide Resistance
Herbicide resistance is an evolutionary process. Herbicides do not directly cause the mutations that lead to herbicide resistance, rather their repeated use over space and time ‘selects’ for the genetic mutations that result in reduced herbicide efficacy. In short, the genetic mutations that confer herbicide resistance are already present before the herbicide is applied. The herbicide treatment eliminates all the weeds that do not contain the mutated gene (i.e. the susceptible plants); if no further intervention is undertaken, the resistant survivors will continue to grow, flower, and set seed, which will be added to the soil seedbank. Over time, the resistant trait becomes dominant in the population as susceptible individuals die out without successfully reproducing (Figure 1) (Hanson et al. 2013).

Resistance in Other Weed Management
Herbicides are not, however, the only selective forces that can alter the structure of weed populations and communities. Any weed management or crop production practice can select for weed species that are adapted to the resulting environment. For example, repeated and consistent mowing (Pirchio et al. 2018) can favor the development of species that are naturally prostrate or spreading in habit, like clovers (Trifolium spp.) (Figure 2). The use of drip-irrigation in processing tomatoes can lower the numbers of annual weeds that emerge and compete with the crop (likely due to reduced surface wetting that stimulates germination) while facilitating the establishment of field bindweed (Convolvulus arvensis), a deep-rooted and drought-tolerant perennial weed (Shrestha et al. 2007; Sosnoskie and Hanson 2015; Sutton et al. 2006). The adoption of reduced tillage in processing tomatoes favors the spread of field bindweed which can be suppressed by frequent soil disturbance. Even hand-weeding can serve as a selective pressure; Echinochloa crus-galli subsp. Oryzicola, a form of barnyardgrass that mimics cultivated rice both in physical form and phenology, is difficult to visually identify and may escape removal in labor-intensive production systems (McElroy 2014).

Figure 2: Herbicide resistance is an evolutionary process. Herbicides do not actively mutate the target weeds, rather, the repeated use of an active ingredient over space and time eliminates susceptible individuals (plain green patches) from a population leaving only the resistant plants (orange patches with the “R”) to reproduce and set seed. Over time, the resistant trait becomes dominant in the population as susceptible individuals die out without successfully reproducing.

Managing Herbicide Resistance
When it comes to managing herbicide resistance, the Weed Science Society of America (WSSA) has a list of strategies to employ in order to increase the diversity of tools in a production system. However, these tools have value beyond the prevention and mitigation of resistance; varying the types and timing of disturbances should help to combat difficult to control species that arose in response to the repeated use of a weed control strategy. Some of the best management practices endorsed by the WSSA include:

• Using multiple herbicide modes of action and applying herbicides at the proper rates and times
• Adopting mechanical weed control when appropriate
• Rotating crops to diversify the type and timing of weed control and production practices
• Emphasizing cultural practices that are suppressive to weeds
• Preventing the movement of weeds within and between systems
• Reducing weed seed production and seed return to the soil seedbank
• Understanding the biology and ecology of troublesome species and identifying the forces that could allow them to become dominant in a given production environment

Source
Del Pozo-Valdivia (2019) Weeds serving as alternative hosts for diamondback moth. https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=29228. Last accessed on May 14, 2019.
Hanson et al. (2013) Selection pressure, shifting populations, and herbicide resistance and tolerance. ANR Publication 8493. https://anrcatalog.ucanr.edu/pdf/8493.pdf. Last accessed on May 16, 2019.
Heap (2019) The International Survey of Herbicide Resistant Weeds. http://weedscience.org/ Last accessed on May 14, 2019.
McElroy (2014) Vavilovian mimicry: Nikolai Vavilov and his little-known impact on weed science. Weed Sci. 62:207-216.
Morgan et al. (2001) Competitive impact of Palmer amaranth (Amaranthus palmeri) in cotton (Gossypium hirsutum). Weed Tech 15:408-412.
Petit et al. (2011) Weeds in agricultural landscapes. A review. Agron. Sustain. Develop. 31:309-317.
Pirchio et al. (2018). Autonomous mower vs. rotary mower: effects on turf quality and weed control in tall fescue lawn. Agronomy 8:15.
Shrestha et al. (2007) Sub-surface drip irrigation as a weed management tool for conventional and conservation tillage tomato (Lycopersicum esculentum Mill.) production in semi-arid agroecosystems. J. Sustain. Agric. 31:91–112.
Smith et al. (2000) Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technol. 14:122-126.

Integrating Key Water Management Information to Better Manage Irrigation

0
Surface irrigated plum orchard.

Over the past several years, few irrigated regions of the country have escaped the impacts of drought and in many places this has translated to increased costs and reduced availability of irrigation water. California growers in particular have experienced dramatic reductions in surface water deliveries and have increasingly turned to using groundwater to make up the surface water shortfall.  Consequently growers have experienced unprecedented water table level reductions that have increased the price of pumping and maintenance on their water wells. Growers have also responded to the drought by increasing personal and personnel resources dedicated to water management and have increased their efforts to better understand the complexities of irrigation water management. Efforts to improve on-farm water management practices must include these key elements:

  • Elevating irrigation system design and management expectations.
  • Better exploit our understanding of crop development and physiology including crop sensitivity to water stress.
  • Increasing our capacities to measure and manage soil water storage.
Miro-sprinkler irrigation system in a young almond orchard.

Proper evaluation and integration of these key water management elements can be complex but can result in operating whole farm and field irrigation systems at peak efficiency over time. For example, it may not help us to increase the monitoring and measurement soil moisture if we do not have a more complete understanding of how specific changes in soil moisture content influence crop water stress and crop performance.  Similarly it would not be difficult to misinterpret plant water stress or soil moisture information in a field where water is not applied in a uniform manner. And how might field indicators of soil water availability be used in different field management settings? Interpreting soil moisture readings in a drip irrigated field that applies water multiple times per week will differ from that of a furrow or flood irrigated field that is irrigated using two to three week intervals. These complexities help to point out that each field is unique from a water management standpoint and that irrigation decision makers should not rely too heavily on any one piece of information to guide their water management program without also considering broader systems information.

Post-filtration pressure monitoring in drip irrigation.

Irrigation system design and management
Improperly designed irrigation systems are incapable of achieving high performance levels making efficient water management an impossibility regardless of how well water might be scheduled. Application efficiency is a fundamental measure of irrigation system performance defined as the amount of beneficially applied water in relation to the amount of total irrigation water applied to the field. One of the biggest obstacles to developing field systems with high application efficiency comes from the fact that many irrigation systems do not apply water uniformly.  Water applied in a non-uniform manner which commonly leads to larger soil water deficits on low water application areas and over-irrigating areas of the field that have higher than average application rates. To maintain preferred soil moisture levels in all areas of the field, water managers typically compensate by over-applying water on portions of the field which causes losses to leaching or run-off both considered to be non-beneficial uses of water. Properly designed irrigation systems work to achieve a high degree of uniformity and deliver near equal amounts of water throughout the field.

One of the more challenging design issues in drip irrigation systems is achieving near uniform pressures throughout the field. Even when fitted with pressure compensating emitters, fields that have large differences in line pressure are susceptible to significant differences in emitter output causing non-uniform applications.  This problem is more commonly associated with long field lengths which stretch the design capacities of our current drip irrigation products. And while many drip irrigation fields have relatively high distribution uniformity, maintenance and management issues continue to leave many fields with less than optimal efficiencies.  Field lengths of less than 800 feet are less prone to this concern while it is a much more common issue in field lengths exceeding 1100 feet.  This emphasizes the need to carefully consider the products being purchased and the pressure requirements of that product. Uniformity issues can also be exagerated as the system ages or in systems that are not properly filtered and maintained to avoid biological and mineral contamination.

Occasionally simple modifications in surface irrigation systems can also result in significant improvements in distribution uniformity and application efficiency. Many flood and furrow irrigated systems experience slow water advance times down the furrow or irrigated strip before the irrigation is completed resulting in long infiltration periods at the head end of the field relative to the infiltration period at the lower end of the field resulting in higher amounts of applied water at the head end of the field. Solutions to this problem have been achieved by increasing the on-flow rate of irrigation water, reducing the size of the irrigation check and by modifying the surface soil roughness to allow water to more freely move to the bottom of the field. These relatively modest system design changes can have a significant impact on delivering water with greater uniformity and efficiency.

Water meters are an essential system evaluation tool.

Crop development, physiology and water stress management
Crop sensitivities to water stress are not constant throughout the growing season depending on crop type, growth stage and atmospheric conditions.  Most field and row crops are highly susceptible to the impacts of limited water availability during the germination and seedling development stages and require high soil moisture availability in the surface soil during this period. However, as the early vegetative growth period is initiated crops like cotton and small grains can go many weeks before the first seasonal irrigation water is required.  This is partially due to the rapid root growth that occurs in these plants and soil water is more easily extracted during these low evapotranspiration days. Alternatively, many vegetable crops including tomatoes, carrots and the brassicas require more frequent irrigation events early season to relieve mild water stress during this period needed to support a rapidly expanding plant canopy. Later in the season when roots are well established and the lower portions of the soil profile are exploited, many deep-rooted crops are less sensitive to water stress and water management strategies can be incorporated that take advantage of deep soil water reserves resulting in delayed irrigation scheduling.

Similar issues can be observed with the permanent crops as early season root flushes occur at different intervals allowing soil moisture to be exploited at varied depths depending on crop type. Generally, crop water stress sensitivities in permanent crops are often more acute during early leaf out periods if winter rains have not fully charged the soil profile and again during the rapid fruit growth periods.  Monitoring the developmental stage of the crop often provides insights to the physiological periods of the crop that are more sensitive to water deficits and points to periods when water deficiencies are more likely to result in impacts to yield and quality. Understanding these more sensitive water stress periods also allows us to better plan on the time of year to increase crop water stress monitoring by using tools such as the pressure chamber or canopy temperature tools that are used to evaluate the relative degree of crop stress. And while water stress limits may differ during the growing season, using established water stress guidelines when available, can provide sound guidance on irrigation scheduling decisions.

Groundwater well development and re-development has become more common as groundwater levels decline and surface water availability is limited.

Managing and measuring soil water storage  
The measurement of soil water can appear to be an uncomplicated process that involves placing soil moisture sensors in the soil and reading the values to provide an irrigation management decision. And while this may be satisfactory for relatively simple, uniform and well understood field systems, there is much that should be considered in developing an approach to soil moisture monitoring if the goal is to maximize the beneficial uses of applied irrigation water. Successful growers and consultants that regularly monitor soil water and use the information as an irrigation scheduling tool agree that there are several important questions to consider before purchasing, installing and using the sensors to make informed irrigation decisions. Before investing the time and resources in soil moisture monitoring, establish basic achievable goals with the understanding that the higher the expectation and more detailed the goal, greater effort and resources will be required.

As goals are established for field monitoring, consideration of the type of sensor to be used is a good place to start as well as the price of those sensors and systems. Field soil moisture systems can start with an investment of a few hundred dollars or less and can run into several thousand dollars for a single monitoring site. Soil water sensors can monitor soil water content more directly or they can provide direct or indirect measures of soil water potential. Each sensor type can be useful depending on the goals and information needs established.  Identifying a field location or locations and placing the sensors at appropriate depths is also important and care should be taken to select locations that are representative of soil water conditions in the crop root zone. Monitoring multiple soil depths can also provide information on soil water storage and percent soil profile water depletion level. Depending on the time of year, many growers have turned to using different soil depths as triggers to initiate irrigation events using sensors placed at more shallow depths to schedule early season irrigation events.

Evaluating the readings from soil moisture devices also requires some experience and understanding of soil water retention characteristics of the field being monitored.  Although estimated values of field capacity, permanent wilting point and plant available water can be referenced for various soil textural classes, these values are very generic and can misrepresent actual site values that can be used for irrigation scheduling purposes making the information less reliable. Developing individual field or soil type data for your fields often aids in providing more specific and repeatable information that can improve irrigation decision making.

Subsurface drip irrigation line configuration for vegetable crops including onions and garlic.

Integrating the information
Recognizing the need to integrate key water system information into a coherent field and farm water management plan system requires work and experience in evaluating multiple system elements and will assist in avoiding the tendency to place the focus and reliance on singular management indicators. Integration of these primary water management elements will have impacts on the time and amount of field applied water and can have significant impacts on farm water use by limiting the application of water that does not directly benefit the crop. Recognizing the importance of integrating appropriate  information from multiple sources to manage farm water requires that we begin using the tools available to us to document and interpret a wide variety of information of our irrigation systems, soil systems and our individual cropping systems.

Independent evaluations of an irrigation system performance can provide feedback on the current issues of concern for individual systems and can provide an assessment of whether system maintenance is badly needed or if help determine if the system requires improved pressure regulation, higher flow rates or other design modifications to operate more optimally.  Water applied uniformly and with high efficiency limits water and nutrient losses to the groundwater and results in more uniform crop yield and quality. But information related to application efficiency or distribution uniformity can also aid in targeting locations for soil moisture monitoring sites and locating sites to monitor plant stress and crop growth.
Using available knowledge of plant development and physiology can aid in identifying periods when the crop is particularly sensitive to water stress events and aid in irrigation scheduling decisions by either limiting the drawdown of soil moisture reserves during those periods or by extending the irrigation cycle. In a similar manner, the use of plant water stress indices can be used to hasten or delay irrigation events and help establish the intensity and duration of water stress events. Numerous university publications are available that provide sound information on the development and physiology of specific crops. This information often includes water management studies that can provide tools to identify crop developmental stage as well as information on water stress sensitivity and periods of relative tolerance to water stress.

Water flow monitoring is an essential system evaluation component.

Establishing reasonable goals and expectations for monitoring soil water status and using soil sensor information for irrigation decision making purposes can assist in tightening irrigation schedules thereby reducing the likelihood of excessive losses while also reducing the risk of crop losses that result from elevated crop water stress levels. This information is particularly useful when combined with other irrigation scheduling tools such as crop evapotranspiration estimates and crop water stress indicators.

Tensiometer installation in a citrus orchard. Tensiometers provide a direct measure of soil water matric potential.

The Crop Consultant Conference Full Menu of Workshops and Seminars

0

Click Here to Sign Up Now

The inaugural Crop Consultant Conference will be a gathering place for all who are dedicated to caring for California specialty crops.

Pest control advisors (PCA), certified crop advisors (CCA), applicators and agriculture retailers are all invited to participate in this two-day event, September 26th – 27th in Visalia.

September 26th – 27th in Visalia

This event at the Visalia Convention Center packs a full menu of educational workshops and seminars, professional networking opportunities plus multiple hours of PCA and CCA credits into 24 hours. The program begins at 1 p.m. on Thursday and concludes after lunch and a final speaker, at 1 p.m. on Friday.

The workshop and seminar topics at the CCC have been chosen to help all crop advisors keep informed about new regulations, pest and disease control and management updates, label information and new technologies. In addition to the educational component, this conference will feature an early evening mixer and networking opportunities to be followed by a full gala dinner and entertainment.

Why Attend?
“Where else can a PCA or CCA get that many hours of credit, receive useful information plus meals and entertainment and not have to drive long distances?” says Jason Scott, publisher of West Coast Nut, Progressive Crop Consultant and Organic Farmer magazines and host of this event.

“This event is right in their back yard, where specialty crops addressed in this conference are grown. It is designed to present the ‘big picture’ of specialty crop production, innovative technology, regulations and challenges here in California,” Scott added.

Citrus
Greg Douhan University of California Cooperative Extension (UCCE) area citrus advisor for Tulare, Fresno and Madera counties, said the conference will be a valuable forum to communicate important research and information regarding many aspects of various crops grown in California. Agriculture industry personnel, PCAs, CCAs, and so on and so forth, benefit from these meetings tremendously to keep abreast of the latest challenges that face California Agricultural producers.

Douhan, whose territory includes a major portion of California’s citrus belt, will be one of the featured conference speakers and will present current information on HLB and Asian Citrus Psyllid management.

Aerial Drone Technology
A presentation on aerial drone technology is also expected to drive attendance.

Chris Lawson, Business Development Manager for Aerobotics, will speak on optimizing integrated pest management (IPM) and nutrient management using drones.

Agronomist Nick Canata with Ingleby USA/Eriksson LLC of Visalia reports that the CCC agenda looks interesting, especially the drone technology presentation. His company, he added, is presently using aerial flyovers to obtain irrigation information.

Mating Disruption
Crop advisors who are evaluating their mating disruption choices will hear a panel of experts that includes United States Department of Agriculture (USDA) researcher Chuck Burks, Dani Casado chemical ecologist with Suterra and Peter McGhee, research entomologist with Pacific BioControl Corp. This panel will evaluate mating disruption as part of an IPM program.

Soils
Thursday’s program starts on the ground with sustainability specialist Richard Kreps who will explain how to get the most out or your soils.

Kreps, with Ultagro said making soils work at an optimal level requires a quite a bit of dedication. Attacking it from all sides: amending, nutrition applications, increasing organic matter, biology and proper irrigation require a lot of coordination. The upside is orchard longevity, higher returns with less disease and pest pressure.

Paraquat Guidelines
Thursday’s education agenda ends with new EPA guidelines for 2020 for Paraquat closed transfer system. Speaker will be Charlene Bedal, West Coast regional manager with Helm AGRO US.

Trade Show and Mixer
The conference mixer and trade show begin at 5 p.m. Thursday, and dinner will be served at 6 p.m. The keynote speech will be Trécé on the Future of Navel Orangeworm Management and Solutions. At 7 p.m., Las Vegas entertainer and illusionist Jason Bird will perform. One of the most innovative and prolific minds in the magic industry, Bird continuously advances the boundaries of his craft while making connections with his audiences. Bird will also perform small group illusions during the trade show/mixer.

Friday
Friday morning’s agenda kicks off at 7 a.m. with breakfast and a presentation by Patty Cardoso of Gar Tootelian on keeping growers compliant with local and state regulations. The trade show opens at 7:30.

Friday’s topics include A New Approach to IPM by Surendra Dara, UCCE entomologist; a panel discussion major crop pests affecting specialty crops; and an update on labels.

To register for this event and see a complete agenda, Click Here.

Click Here to Sign Up Now

Management Practices to Improve Soil Function

0
Farmers and consultants examining crop residue
Figure 1: Farmers and consultants examining crop residue and root growth and development in strip till corn in Chowchilla, California. Photo courtesy of Jeff Mitchell.

Soils are essential for life on earth. In addition to the fundamental role of soil in agriculture, soils support building and recreation, filter and store water, recycle nutrients, protect our communities from flooding, sequester carbon, and due to the wide microbial diversity of soils, have even been a source of antibiotic and prescription drug discovery. Soils are alive! In fact, up to one billion bacterial and several yards of fungal hyphae can live in a single gram of soil. These microbes, invisible the naked eye, are at the core of many of our soil building management practices.

Despite being one of our most important natural resources, we may not often think about soil as something that needs to be built or protected. Unfortunately, soils globally and in the United States are being destroyed at a rapid rate. Soil is a non-renewable resource and once a soil has been degraded to the point where it cannot be used to produce crops, it is very challenging, if not impossible, to restore. As President Franklin Delano Roosevelt once said, “the nation that destroys its soil, destroys itself.” The United States Department of Agriculture (USDA)/National Resources Conservation Service (NRCS) estimates that the annual cost of soil erosion in the United States alone is $44 billion. While we cannot re-create soil once it is destroyed, we can employ on farm management practices to reduce the risk of soil destruction and to increase soil function.

The main principles of soil health are to maintain soil cover, minimize soil disturbance, keep a living root in the soil, and incorporate plant diversity. These principles are intended to keep soils alive by encouraging flourishing soil microbial communities and physically protecting soils from either loss or structural damage. Soil microbes are a critical part of soil health because of the role they play in nutrient cycling and building soil aggregates. Soil aggregates are clumps of soil particles that are bound together, leaving more available space for air and water. Aggregates are held together by organic matter (like roots), organic compounds (produced by soil microbes), and fungal hyphae. Microbes get nutrients and energy from the carbon found in soil organic matter. This is the reason that many soil health practices involve increasing soil organic matter—it provides food for soil microbes which increases their activity and population. Consider this: soil microbes are necessary for the conversion of nitrogen from one form to another (like ammonium to nitrate) and they need carbon to thrive.

Maintaining Soil Coverage

Bare soil is more susceptible to wind and water erosion, as well as to surface compaction. Our top soil is the most nutrient-rich part of the profile so when we lose soil to erosion we are losing our most valuable soil to the environment. Although loss of soil to erosion may seem minor from year to year, when we consider that it takes 500 years to form an inch of topsoil, if we are losing just 1/100 of an inch of topsoil to erosion a year, we are still losing soil five times faster than it is being formed. Surface compaction develops when rain and irrigation water hits tilled soil, which forms a soil crust. Maintaining soil coverage throughout the year physically protects soil and provides a range of other benefits like reducing soil evaporation rates, moderating soil temperature, and suppressing weed growth. In annual systems we can keep our soil covered by planting a cover crop during our fallow season. Keeping crop residue on the field is also effective (Figure 1).

Minimize Soil Disturbance

As described above, soil microbial activity is critical for soil aggregate formation and stability. Tillage practices disrupt this activity and break the fungal hyphae and roots that are holding aggregates together. Although it may seem that tillage increases soil pore space, this benefit is short lived. This is because individual particles break off aggregates in recently tilled soils and can fill in pore spaces. A healthy soil has about 50 percent open pore space (half filled with air and half filled with water). Soil pores are where roots grow and microbes thrive. There are other management practices to minimize soil disturbance. These include not working or driving over soil when it is wet, distributing tractor weight over a larger surface area to reduce pressure on specific points in the field, and reducing the number of trips over a field when possible. Even if converting to no-till isn’t realistic for your farm, reducing the number of passes with the disc over a field and using vertical instead of horizontal tillage are ways to minimize soil disturbance. California farmers in a number of regions are now experimenting and sharing their experiences with reduced disturbance production systems like direct seeding into crop residue from the previous crop with little soil disturbance (Figure 2). Ongoing summaries of this work may be found at http://casi.ucanr.edu/

Direct seeding corn into wheat stubble
Figure 2: Direct seeding corn into wheat stubble in Five Points, California. Photo courtesy of Jeff Mitchell.

Keep a Living Root in the Soil

Plant roots release small carbon-based compounds called root exudates, which are a mix of sugars, amino acids, enzymes, organic acids and other compounds. These exudates can help breakdown mineral nutrients, leading to increases soil fertility. They also serve as a source of food for soil microbes. Maintaining a living root in the soil helps keep our soil alive throughout the year. Many beneficial microbes cannot survive in a low-carbon environment and keeping a living root is yet another tool for maintaining consistent soil carbon levels. In general, keeping our soils alive throughout the year will increase soil function. Cover crops that are inserted into rotations as possible are a means for achieving this soil health principle. As part of a California Department of Food and Agriculture Healthy Soils Program grant, my colleagues and I are experimenting with planting cover crops during the fallow season. In San Joaquin County, UC Cooperative Extension farm advisors Michelle Leinfelder-Miles and Brenna Aegerter, are researching the effects of a warm-season legume cover crop between winter small grains rotations. In Sutter County, Amber Vinchesi-Vahl and I are researching the effects of a winter cover crop, at different seeding rates, between summer cash crops (Figure 3). Our projects are entering the second of a third-year project, and we look forward to reporting the results on soil health and crop yields in the future.

Incorporate Plant Diversity

In annual systems this is called crop rotation. Crop rotation is beneficial for many reasons. It breaks disease cycles by starving out pathogens that can only thrive on specific plants (or plants in a specific family). In addition, crops with different rooting depths will mine nutrients, release carbon compounds, and improve soil structure at different depths of the soil profile. Finally, plants form symbiotic relationships with various microbes, but these relationships are often species specific. When we incorporate plant diversity into our systems we also build up the diversity in our soil microbial populations. In perennial systems, plant diversity can be achieved by planting a cover crop in between crop rows.

Winter vetch cover crop
Figure 3: Winter vetch cover crop (with volunteer wheat) in Meridian, California.

Although soil biology is an important component of soil health, it is not the only consideration. It’s also important to remember the rules of soil fertility including the 4Rs and the Law of the Minimum. As a reminder, the 4Rs refer to the Right Rate, the Right Source, the Right Timing, and the Right Mode of Application. These principles allow us to optimize our fertilizer application by ensuring the greatest nutrient use efficiency. This reduces the risk of loss to the environment and can increase the bottom line. Liebig’s Law of the Minimum refers to the idea that the limiting factor has to be addressed first. In other words, the soil issue (pH, nutrient status) that is most restricting yield is the one that has the greatest potential to improve yield. If the pH is yield limiting, no amount of fertilizer application will fix this problem.

Maintaining soil health is the long game and changes may not be apparent for several years. However, the more the management practices outlined above are incorporated into our farming systems, the greater the likelihood of long-term viability and protection of arable land. In addition to the benefits already discussed, soil water dynamics can be improved by increased water infiltration and water storage. Every farming system is unique and some of the practices may be cost-prohibitive or not viable for some other reason. The goal should be to incorporate as many of the practices that will work in our farm systems as often as we can. Every opportunity to build and protect our soil will ensure the long-term economic viability of our farms, as well as food security for our growing global population.

 

-Advertisement-